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Abstract

Covariate balance is crucial in obtaining unbiased estimates of treatment e↵ects
in observational studies. Methods based on Inverse Probability Weights (IPW) have
been widely used to estimate treatment e↵ects with observational data. Machine
learning techniques have been proposed to estimate propensity scores. These tech-
niques however target accuracy instead of covariate balance. Methods that target
covariate balance have been successfully proposed and largely applied to estimate
treatment e↵ects on continuous outcomes. However, in many medical and epidemi-
ological applications, the interest lies in estimating treatment e↵ects on time-to-an-
event outcomes. In this paper, we start by presenting robust orthogonality weights
(ROW), a set of weights obtained by solving a quadratic constrained optimization
problem that maximizes precision while constraining covariate balance defined as the
sample correlation between confounders and treatment. By doing so, ROW optimally
deal with both binary and continuous treatments. We then evaluate the performance
of the proposed weights in estimating hazard ratios of binary and continuous treat-
ments with time-to-event outcomes in a simulation study. We finally apply ROW on
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the evaluation of the e↵ect of hormone therapy on time to coronary heart disease and
on the e↵ect of red meat consumption on time to colon cancer among 24,069 post-
menopausal women enrolled in the Women’s Health Initiative observational study.

Keywords: survival analysis; covariate balance; Cox regression; optimization; continuous
treatments; hazard ratio
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1 Introduction

Covariate balance is crucial in obtaining unbiased estimates of treatment e↵ects in observa-

tional studies. Weighted methods based on Inverse Probability Weights (IPW) have been

used to estimate the e↵ect of a treatment on an outcome using observational data. IPW are

constructed as the inverse of the probability of a unit being assigned to a treatment condi-

tional to pre-treatment covariates, i.e., the propensity score (Rosenbaum and Rubin, 1983).

Despite their wide use, IPW-based methods tediously rely on the correct specification of

the propensity score model, which violations lead to biased estimates, and on the positivity

assumption (Imbens and Rubin, 2015), which practical violations (Petersen et al., 2012)

lead to extreme weights and erroneous inferences (Robins et al., 1995; Scharfstein et al.,

1999; Robins et al., 2007; Kang and Schafer, 2007). Machine learning techniques, like the

Super Learner (Van der Laan et al., 2007), have been proposed to improve propensity score

estimation in the case of model misspecification (Lee et al., 2010; Pirracchio et al., 2015).

These techniques however target accuracy instead of covariate balance.

Methods that mitigate model misspecification while targeting covariate balance have

been proposed. Among others, Imai and Ratkovic (2014) proposed and extended (Fong

et al., 2018) Covariate Balancing Propensity Score (CBPS), which uses generalized method

of moments to estimate the logistic regression model that optimally balances covariates. Zu-

bizarreta (2015) proposed Stable Balancing Weights (SBW), a set of weights with minimal

sample variance that satisfy a list of approximate moment matching conditions. Hain-

mueller (2012) presented entropy balancing weights obtained by minimizing the entropy

of the weights while satisfying balance conditions. The literature of covariate balance is

extensive and many other methods have been developed in the recent years (Kallus and

Santacatterina, 2019b,a; Kallus and Santacatterina, 2018; Hirshberg et al., 2019; Hirsh-
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berg and Wager, 2017; Zhao and Percival, 2017; Zhao et al., 2019; Wong and Chan, 2017;

Visconti and Zubizarreta, 2018; Zubizarreta et al., 2014; Li et al., 2018; King et al., 2017;

Tübbicke, 2020; Vegetabile et al., 2020; Wu et al., 2018; Yiu and Su, 2018, among others)

Although methods that target covariate balance have been shown to be robust to either

model misspecification, practical positivity violation or both, these methodologies have

been mainly developed and applied to estimate treatment e↵ects on continuous outcomes.

However, in many medical and epidemiological applications, the interest lies in estimating

the e↵ect of a treatment e↵ects on time-to-an-event outcomes. Examples include, the

evaluation of the impact of hormone therapy on time to coronary heart disease (CHD)

(Hulley et al., 1998; Manson et al., 2003), and the impact of red meat consumption on time

to colon cancer (Larsson et al., 2005). When estimating treatment e↵ects with time-to-

event data one of the most common causal estimand of interest is the hazard ratio of the

Cox proportional hazard model (although other estimands may be of interest such as the

survival di↵erence or the mean survival (Mao et al., 2018)).

In this paper, we start by presenting robust orthogonality weights (ROW), which op-

timally and robustly balance covariates for estimating e↵ects of binary and continuous

treatments. We then evaluate its performance in estimating hazard ratios of binary and

continuous treatments with time-to-event outcomes. The proposed weights are obtained

by solving a convex constrained quadratic optimization problem which minimize the sam-

ple variance of the weights, thus controlling for extreme weights and maximizing precision,

while constraining the sample correlation between treatment and covariates, thus optimally

balance covariates with respect to either binary or continuous treatments. Similar to IPW,

matching, CBPS and SBW, the set of ROW is obtained without the use of the outcome,

thus emulating randomization. By minimizing the sample variance of the weights while

controlling for a measure of balance, ROW is constructed in the spirit of SBW. However,
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di↵erently from SBW, ROW can also be used to estimate e↵ects of continuous treatments.

Also, by using the sample correlation as a measure of balance, ROW can be seen as an

extension of CBPS (Fong et al., 2018) in which precision is maximized while satisfying a

constraint on the covariate balance. Finally, ROW can be seen as a specific case of the

framework of Yiu and Su (2018) (See for instance Section 4.2 of Yiu and Su (2018) for

continuous treatments).

Our contribution to this field of literature is twofold: to provide a set of weights of

minimal variance that optimally balance confounders for estimating the e↵ect of binary

and continuous treatments; and to evaluate and apply the proposed weights to the esti-

mation of hazard ratios for time-to-event data. In addition, we contribute to this liter-

ature, by providing a thorough comparison of the performance of several covariate bal-

ancing methods with time-to-event data in multiple simulation scenarios and in two case

studies. Finally, we provide a R package for the computation of the weights available

at https://github.com/michelesantacatterina/ROW. Code for simulations and case studies

analyses is available at https://github.com/michelesantacatterina/ROW-time-to-event.

In the next Section we present ROW and provide some practical guidelines on their use.

In Section 3, we evaluate the performance of ROW with respect to absolute bias, root mean

squared error, covariate balance and computational time across levels of practical positivity

violation, misspecification and censoring for both binary and continuous treatments. In

Section 4, we apply ROW to the evaluation of the e↵ect of hormone therapy on time to

first occurrence of coronary heart disease and the impact of red meat consumption on

time to colon cancer onset using data from 24,069 postmenopausal women enrolled in the

Women’s Health Initiative observational study (Women’s Health Initiative, 1998). We

provide some concluding remarks in Section 5.
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2 Robust orthogonality weights

In this section, we first introduce some notations and assumptions, we then present the

optimization problem used to obtain robust orthogonality weights and finally discuss some

practical guidelines.

2.1 Notations and assumptions

Suppose we have a simple random sample of size n from a target population. For each

unit i = 1, . . . , n, suppose we observe a binary or continuous treatment Ai, a set of pre-

treatment covariates (also referred to as confounders) Xi, and the observed time to an

event, Ti. In addition, let Ci denote the ith individual’s censoring time, �i = I [Ti < Ci], the

complete-case indicator and Yi the observed event only if �i = 1. We define the potential

(counterfactual) follow-up time and response as Ti(a) and Yi(a) respectively. Throughout

this paper, in addition to consistency and non-interference (Imbens and Rubin, 2015), we

assume

Assumption 2.1. Strong ignorability {Ti(a), Yi(a)} ?? Ai|Xi,

Assumption 2.2. Noninformative censoring Ci ?? {Ti(a), Yi(a)},

Assumption 2.3. Positivity �(Xi) = P (Ti = t|Xi) > 0,

where �(Xi) is the classic propensity score if the treatment is binary and the generalized

propensity score as presented in Hirano and Imbens (2004) if the treatment is continuous.

The main causal estimand of interest is the marginal hazard ratio, i.e., the ✓ parameter of

the Cox proportional hazard model

�T (a)(t) = �0 exp (✓A) .
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To estimate ✓, standard practice suggests to use an outcome model such as the conditional

Cox regression model �(t|Xi) = �0 exp (✓Ai + �Xi) (a conditional estimator), or an IPW-

marginal Cox model, i.e., an IPW-weighted Cox regression, regressing only the treatment

on the time to the event, with propensity scores estimated using regression or machine

learning techniques (see Buchanan et al. (2014) for an applied example). These procedures

provide biased and erroneous inferences when the outcome model or the propensity score

model is misspecified or when the positivity assumption is practically violated. In addition,

covariate balance is not targeted. In the next Section, we introduce a convex quadratic con-

strained optimization problem to obtain robust orthogonality weights that target covariate

balance and are robust to practical positivity violations and misspecification.

2.2 A convex quadratic constrained optimization problem

A general measure of covariate balance is the correlation between treatment and covariates.

When the correlation is equal to zero, the covariates are uncorrelated from the treatment.

In the spirit of Zubizarreta (2015), we propose to find weights with minimum variance while

satisfying contraints on the sample correlation between covariates and the treatment under

study. We therefore propose to obtain ROW by solving the following quadratic linearly

constrained optimization problem,

minimize
w

kw� enk22 (2.1)

subject to |⇢k(w)|  �, k = 1, . . . ,m, (2.2)

e
>w = 1, (2.3)

w � 0, (2.4)
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where ⇢k(w) =
Pn

i=1 wiX
⇤
i,kT

⇤
i,k is the (weighted) mean of the products of the standardized

covariates and treatment, i.e., , the sample correlation, X⇤ and T
⇤ are the scaled covariates

and treatment variables, m is the total number of covariates, e is the unit vector, and en is

the unit vector divided by the sample size n which, by construction, represent the mean of

the weights. When a solution to optimization problem (2.1)-(2.4) exists, constraint (2.2)

guarantees that the correlation between treatment and covariates is at most equal to � (for

each covariate), and constraints (2.3) and (2.4) guarantee that the weights sum up to 1

and are positive, respectively.

What does the set of ROW achieve? In Figure 1, we provide a simple scenario in

which a binary treatment (left panel of Figure 1) and a continuous treatment (right panel)

are generated as a function of a continuous covariate (x-axis), using a probit model and

a simple regression model with normal errors, respectively. Blue lines represent the true

relationship between the covariate and the treatment. For instance, in the continuous

treatment scenario, the covariate has a positive impact on the treatment, i.e., the regression

coe�cient is positive. The black lines represent the values of the regression coe�cients after

weighting by ROW (we first computed ROW by solving optimization problem (2.1)-(2.4)

and then plug the obtained weights into a weighted probit model and ordinary square

regressor, regressing the covariate on the treatment). Under the binary treatment scenario,

the weighted coe�cient equals 0.5, while it equals 0 in the continuous treatment scenario

for each value of the covariate. In summary, these figures show that ROW orthogonalize

covariate and treatment variables thus eliminating associations between them. By doing so,

as shown in our simulations in Section 3 and in our case studies in Section 4 ROWmaximize

covariate balance. Figure 16 in Section 8 of the Supplementary Material shows that ROW

orthogonalize covariates and treatment variables also when the true relationship between

them is nonlinear quadratic, nonlinear cubic, nonlinear without correlation, sinusoidal, and
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when the treatment is right- and left-skewed. In addition Figure 16 shows that under

independence between treatment and a covariate, ROW result in almost uniform weights.

2.3 Practical guidelines

In this section, we provide some practical guidelines on the choice of the parameter �, and

on standard error estimation for the marginal hazard ratio.

Optimization problem (2.1)-(2.4) depends on the parameter �. This parameter set the

upper bound for the absolute value of the sample correlation between treatment and co-

variates. Smaller values of � induce smaller correlation, thus inducing higher balance and

consequently lower bias. Figure 2 provides a graphical representation of the impact of � on

bias, mean squared error and balance. Precisely, it shows absolute bias (left panels), root

mean square error (middle panels) of the hazard ratio estimated using a Cox regression

model weighted by ROW, and mean covariate balance across four continuous covariates

(right panels) for binary (upper panels) and continuous treatments (lower panels), across

levels of the parameter �, set equal to 0.0001, 0.025, 0.05, 0.075, and 0.1 (Simulations de-

tails are provided in section 3). For the binary treatment, we considered the absolute

standardized mean di↵erence as a measure of balance while for the continuous treatment

we considered the absolute correlation between treatment and covariates. Lower values of

� guarantee the lowest absolute bias, and balance. In addition, since optimization problem

(2.1)-(2.4) constraints imbalance while controlling precision by minimizing the variance of

the weights, lower values of � also guarantee minimal root mean squared error for both

types of treatments. We consequently suggest to set � = 0.0001 or � = 0.001.

As suggested by other authors (Hernán et al., 2001; Robins et al., 2000), we suggest to

use the robust “sandwich” estimator (Freedman, 2006) for the estimation of the standard

error. When computational resources are not limited, we also suggest to use bootstrap

9



0.00

0.25

0.50

0.75

1.00

−2 0 2
Covariate

Tr
ea

tm
en

t

1 2 3
ROW

Binary Treatment

−2

0

2

−1 0 1 2 3
Covariate

Tr
ea

tm
en

t

2.5 5.0 7.5
ROW

Continuous Treatment

Figure 1: Graphical representation of ROW balancing a covariate (x-axis) across a binary (left panel)

and continuous (right panel) treatments (y-axis). Blue lines represent the true relationships between the

binary (a probit model) and the continuous (simple regression with normal errors and positive coe�cient)

treatment. Black lines represent the relationship between treatments and covariate after weighting for

ROW. Size and color of the circles represent the individual weight assigned (the larger/darker the higher).
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Figure 2: Absolute bias (left panels), root mean squared error (RMSE) (middle panels), absolute stan-

dardized mean di↵erence (Balance)(top right panel), absolute correlation (bottom right panel), for the

binary (top panels) and continuous (bottom panels) treatment across levels of the balance constraint � (eq.

(2.1)).
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(Davison and Hinkley, 1997). We provide a comparison between the naive (the inverse of

the observed Fisher information of ✓̂, the estimated hazard ratio of the Cox hazard model

introduced in Section 2.1), robust and bootstrap standard errors in Section 6.1 of the Sup-

plementary Material. To compute the bootstrap standard error, we used non-parametric

bootstrap with normal approximation confidence intervals (Davison and Hinkley, 1997).

Similarly to Zubizarreta (2015) and Santacatterina and Bottai (2018); Santacatterina

et al. (2019), Lagrange multipliers can be used to evaluate the impact that a small de-

crease in the parameter � would cause in the objective function (2.2). We refer to Section

3.3 of Zubizarreta (2015) and Section 3 and 3.1 of Santacatterina and Bottai (2018) and

(Santacatterina et al., 2019), respectively for detail.

Many solvers are available to solve constrained convex quadratic optimization problems.

We suggest using Gurobi (Gurobi Optimization, 2020).

3 Simulations

In this section we evaluate the performance of ROW with respect to, absolute bias, root

mean square error, covariate balance and computational time, across levels of practical

positivity violations, misspecification and censoring when estimating the marginal hazard

ratio with a binary and continuous treatment. In summary, ROW performs well across all

of the considered scenarios.

3.1 Setup

We considered a sample size of N = 1, 000. We computed the expected survival time t by

following the inverse probability method based on the Weibull distribution (Bender et al.,
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2005),

Ti =

 
� log(u)

 exp
�
✓Ai +X>

i �
�
! 1

⇢

,

where u ⇠ Unif(0, 1),  = 0.01 (the scale parameter of the Weibull distribution), ✓ = 0.2,

X1 ⇠ N(0.1, 1), X2 ⇠ N(0.1, 1), X3 ⇠ logN(0, 0.5), X4 ⇠ 5Beta(3, 1) X5 is a random

sample with replacement of size 4 with probabilities 0.35, 0.25, 0.05, 0.35 respectively, and

X6 ⇠ Binom(0.25), � = (0, 1, 0, 1.4, 1.4, 1), and ⇢ = 1 (the shape parameter of the Weibull

distribution). With the choice of these six covariates we wanted to reflect real-world popu-

lations in which the time to an event depends on binary, categorical and continuous (normal

and non-normal) covariates. We generated the censoring times Ci using an exponential dis-

tribution, i.e., Ci ⇠ Exp(✏), with values for the rate parameter ✏ described in section 3.1.4.

Finally, we obtained the observed (censored) survival times by taking the minimum between

Ti and Ci. The causal estimand of interest is the hazard ratio (HR), HR = exp ✓ = 1.22.

We provide detailed information on how we generated Ai in the following Section.

3.1.1 Estimating HR for binary and continuous treatments

To evaluate the performance of ROW, we considered estimating the hazard ratio un-

der two scenarios: binary and continuous treatments. We refer to the first scenario

as the binary scenario and the second as the continuous scenario. In the binary sce-

nario, we considered Ai ⇠ Binom(⇡(Xi)), where ⇡(Xi) =
⇣
1 + exp(�

⇣

� �X>

i e
⌘
)
⌘�1

and

 = n
�1
Pn

i=1

�
X>

i �
�
. In the continuous scenario, we considered Ai ⇠ logNorm(µ(Xi), ⌘),

where µ(Xi) = � +X>
i e. The rate parameter ✏ was set equal to 0.01 (low percentage of

censored observation - see section 3.1.4 for details) and the parameter ⌘ was set to be equal

to 0 (null misspecification - see Section 3.1.3 for details). We provide detailed information

on the parameters � and ⌘ in the following Section.
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3.1.2 Estimating HR across levels of practical positivity violations

To evaluate the performance of ROW across levels of practical positivity violations for

the binary scenario, we considered five values for �, from 0.1 to 2. We refer to � = 0.1

as weak violation, � = 1 as moderate violation and to � = 2 as strong violation. The

propensity score ranged from 0.13 to 0.61 under weak violation, 0.05 to 0.97 under moderate

violation and 0.001 to 0.995 under strong violation (average of min/max propensities). In

the continuous scenario, we considered five di↵erent values (0,0.1,0.5,0.6,0.7,0.9) for the

parameter ⌘ of the log-Normal distribution, i.e., the standard deviation of the random

variable which higher values generate a more right-skewed distribution. We refer to ⌘ = 0

as weak violation, ⌘ = 0.6 as moderate violation and ⌘ = 0.9 as strong violation. The

rate parameter ✏ for the censoring level was set equal to 0.01 (low percentage of censored

observation - see Section 3.1.4 for details) and we considered correct specification (see

Section 3.1.3 for details).

3.1.3 Estimating HR across levels of misspecification

We evaluated the performance of ROW across levels of misspecification. Specifically, for

the binary scenario, we generated Z1 = (X1+0.5)2, Z2 = ((X1X2)/5+1)2, Z3 = exp(X3/2),

and Z4 = X4(1+ exp(X3))+ 1. For the continuous scenario we generated Z1 = exp(X1/2),

Z2 = X2(1 + exp(X1)) + 1, Z3 = (X1X3/25 + 0.2)3, and Z4 = 2 ⇤ log(|X4|). We then

considered a convex combination between the correct variables (X1, X2, X3, X4) and the

misspecified variables (Z1, Z2, Z3, Z4), e.g., X1 = X1(1 � ⌧) + Z1⌧ , and let ⌧ vary from 0

to 1 (0,0.25,0.5,0.75,1). We refer to ⌧ = 0 as null misspecification, ⌧ = 0.5 as moderate

misspecification and ⌧ = 1 as strong misspecification. The rate parameter ✏ for the censor-

ing level was set equal to 0.01 (low percentage of censored observation - see Section 3.1.4
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for details) and we considered moderate pratical positivity violation (see Section 3.1.2 for

details).

3.1.4 Estimating HR across levels of censoring

We also evaluated the performance of ROW across levels of censoring. We considered five

values (0,1,10,100,1000) for the rate parameter ✏ of the exponential distribution used to

generate the censoring times, resulting in 1, 7, 25, 52 and 78 percent of censored observation

in the binary scenario and in 2, 10, 27, 53 and 76 percent of censored observation in the

continuous scenario. We considered correct specification (see Section 3.1.3 for details) and

moderate pratical positivity violation (see Section 3.1.2 for details).

3.1.5 Methods comparison

In addition to the standard of practice methods such as the conditional Cox proportional

hazard model and IPW-Cox regression, we consider only methods that 1) use only the in-

formation of the treatment and covariates and not the outcome, 2) target covariate balance

in some way and 3) their R implementation is readily available.

For the binary scenario, we compared ROW with IPW-Cox regression, where propensity

scores were estimated by using SuperLearner (IPW) with the following library of algorithms:

logistic regression model with only main e↵ects, logistic regression with main e↵ects and

interactions, lasso-penalized logistic regression, random forest, bayesian logistic regression

and extreme gradient boosting classifier; Balance SuperLearner (BalSL) as described in

Pirracchio and Carone (2018) with the same library of algorithms as for IPW; and by

using boosted logistic regression (GBM) (with absolute standardized mean di↵erence as

stopping criteria, interaction depth equal to 3, number of trees equal to 10,000, shrinkage

equal to 0.01 and bag fraction equal to 1) (McCa↵rey et al., 2004). In addition, we com-
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pared ROW with Propensity Score Matching (PSM), with propensity scores obtained as for

IPW (Sekhon, 2008); Covariate Balancing Propensity Score (CBPS) containing only the

covariate balancing conditions (exact identification); entropy balancing weights (EBAL)

(Hainmueller, 2012); stable balance weights (SBW) (Zubizarreta, 2015) where we selected

the degree of approximate covariates balance by following the tuning algorithm presented

in Wang and Zubizarreta (2020), (we chose the grid of values for the tuning algorithm

equal to 0.0001, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, and 0.1); outcome model (OM), a Cox

proportional hazard model regressing confounders and treatment on the time to event; and

a Cox regression model conditioning only on the binary treatment (naive).

For the continuous scenario, we compared ROW with IPW-Cox regression, where

propensity scores were estimated by using SuperLearner (IPW) with the following library of

algorithms: linear regression with only main terms, linear regression with main terms and

interactions, lasso-penalized linear regression, random forest, Bayesian linear regression, lo-

cal polynomial regression, and extreme gradient boosting regressor; Balance SuperLearner

(BalSL) with the same library of algorithms as of IPW; and by using gradient boosted

regression (GBM) (with Pearson correlation between covariates and treatment as stopping

criteria, interaction depth equal to 4, number of trees equal to 20,000, shrinkage equal to

0.0005 and bag fraction equal to 1). The final IPW weights were obtained assuming Normal

conditional density of the treatment as suggested by Robins et al. (2000). In addition, we

compared ROW with Covariate Balancing Propensity Score (CBPS) containing only the

covariate balancing conditions; non-parametric CBPS (npCBPS); outcome model (OM),

a Cox proportional hazard model conditioned on confounders and treatment; and a Cox

regression model conditioning only on the continuous treatment (naive).
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3.2 Additional simulations

In addition to the simulations presented in section 3.1, we provide additional simulations to

evaluate the impact of 1) practical positivity violation, misspecification and censoring on

coverage of the 95% confidence interval; 2) sample sizes and 3) number of covariates included

in the analysis, on absolute bias, root mean squared error, balance and computational time

in seconds. We provide a summary of the results in section 3.3.3 and detailed results in

Section 6 of the Supplementary Material.

3.3 Results

3.3.1 Binary treatment

In summary, ROW performed well across all simulation scenarios. Figure 3 shows abso-

lute bias (left panels) and root mean squared error (RMSE) (right panels) across levels of

practical positivity violations (top panels), misspecification (middle panels) and censoring

(bottom panels) when estimating the hazard ratio of a binary treatment. ROW (black-solid

line), EBAL (dark-blue dashed-dotted) and SBW (red dashed-dotted) performed well over-

all. IPW (blue dashed), BalSL (orange dashed), and GBM (light-blue dashed) performed

moderately well across all levels of misspecification and censoring but showed higher bias

and RMSE for moderate and strong violation of the positivity assumption. These results

suggest that flexible models for the estimation of the propensity scores, may mitigate pos-

sible misspecification, but lead to erroneous inferences in the presence of lack of covariate

overlap. Similar results were obtain for CBPS (yellow dotted-dashed). OM (purple dotted)

outperformed all other methods across levels of positivity violation but performed worse

across levels of misspecification. Contrary to previous literature (Austin, 2013), we found

that all methods outperformed PSM (green dotted; values are outside figures).
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Figure 3: Binary treatment : Absolute bias (left panels) and root mean squared error (RMSE) (right

panels) across levels of practical positivity violations (top panels), misspecification (middle panels) and

censoring(bottom panels) when estimating the hazard ratio of a binary treatment. ROW: Robust Opti-

mal Weights; IPW: Inverse Probability Weighting; GBM: propensity scores were estimated with Gradi-

ent Boosting Machine; CBPS: Covariate Balancing Propensity Score; SBW: Stable Balancing Weights;

Naive: Cox proportional hazard model including only the treatment; BalSL: Balance SuperLearner; PSM:

Propensity Score Matching (values outside figures); EBAL: Entropy Balancing; OM: (outcome model) Cox

proportional hazard model including confounders and treatment.
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3.3.2 Continuous treatment

ROW performed well across all simulation scenarios, especially across levels of misspecifi-

cation. Figure 4 shows absolute bias (left panels) and root mean squared error (RMSE)

(right panels) across levels of practical positivity violations (top panels), misspecification

(middle panels) and censoring (bottom panels) when estimating the hazard ratio of a

continuous treatment. As for the binary treatment scenario, IPW (blue dashed), BalSL

(orange dashed), and GBM (light-blue dashed) performed well across levels of misspecifi-

cation and censoring but were outperformed by all other methods across levels of practical

positivity violation. CBPS (yellow dotted-dashed) and npCBPS (dark-blue dotted-dashed)

performed well across levels of positivity violations and censoring and performed similarly

to IPW, BalSL and GBM across levels of misspecification. OM performed worse across

levels of misspecification.

3.3.3 Summary of additional simulations’ results

By using either the robust or bootstrap standard error, ROW achieved desirable cover-

age under weak and moderate practical positivity violation and misspecification for both,

binary and continuous treatment (Figures 9 and 10 in the Supplementary Material). Un-

der strong practical positivity violation and misspecification, ROW showed undercoverage

due to increased bias, regardless of the use of the robust, bootstrap or naive standard er-

ror. ROW achieved desirable levels under all censoring levels. Absolute bias and RMSE

decreased while increasing the sample size (top panels of Figures 11 and 12 in the Supple-

mentary Material). ROW achieved low balance (below 0.05 standardized absolute mean

di↵erence across confounders for the binary treatment scenario and below 0.025 absolute

correlation across confounders for the continuous treatment scenario) across all sample sizes
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Figure 4: Continuous treatment : Absolute bias (left panels) and root mean squared error (RMSE) (right

panels) across levels of practical positivity violations (top panels), misspecification (middle panels) and

censoring(bottom panels) when estimating the hazard ratio of a binary treatment. ROW: Robust Optimal

Weights; IPW: Inverse Probability Weighting (propensity scores were estimated with SuperLearner; GBM:

propensity scores were estimated with Gradient Boosting Machine; OM: (outcome model) Cox proportional

hazard model including confounders and treatment; BalSL: Balance SuperLearner; CBPS: Covariate Bal-

ancing Propensity Score; Naive: Cox proportional hazard model including only the treatment; npCBPS:

non-parametric CBPS.
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considered. Although balance was kept at low levels, absolute bias and RMSE increased

while increasing the number of covariates (top panels and left bottom panels of Figures 13

and 14 in the Supplementary Material). This can be explained by the fact that we gener-

ated the data by setting the coe�cient for each confounders equal to 1, regardless of the

number of confounders considered, thus leading to a strongly confounded model when the

number of confounders increased (detailed description of the simulation setting is provided

in Section 6.3 of the Supplementary Material). Since we plan to apply ROW using obser-

vational data from medical registries, we were especially interested in the computational

burden needed to find a solution for larger sample sizes and for an increased number of

confounders. We found that for relatively large sample sizes, e.g., n = 10, 000 the solver

could find a solution in a few seconds (bottom right panels of Figures 11 and 12 in the

Supplementary Material). In our case-study presented in Section 7 in which we balanced

36 confounders on a population of n = 24, 069 individuals, the solver found a solution in

about 12 seconds.

4 Case studies

In this section, we apply ROW to the evaluation of the e↵ect of hormone therapy on

coronary heart disease and the impact of red meat consumption on colon cancer using data

from the Women’s Health Initiative observational study (Women’s Health Initiative, 1998).

4.1 The e↵ect of hormone therapy on coronary heart disease

The Women’s Health Initiative (WHI) is a long-term study of postmenopausal women that

focuses on best strategies for the prevention and treatment of heart diseases, breast and

colon cancers and other chronic diseases. WHI is composed of a randomized clinical trial
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and an observational study. The WHI trial aimed at evaluating the health benefits and

risks of hormone therapy when taken for chronic disease prevention among predominantly

healthy postmenopausal women (Writing Group for the WHI Investigators and others,

2002). Specifically, one of the trial’s component evaluated the impact of estrogen plus

progestin therapy on the risk of coronary heart disease (CHD). Prior to this trials, large

observational studies suggested that postmenopausal hormone users had a reduced risk of

CHD (Stampfer and Colditz, 1991; Grady et al., 1992; Sidney et al., 1997; Psaty et al.,

1994). In contrary, results from the WHI trial suggested an increased risk of CHD (Writing

Group for the WHI Investigators and others, 2002). Precisely, in the original trial, the

Authors found a statistically significant estimated hazard ratio equal to 1.29 (1.02-1.63).

In this section, we aim at evaluating the e↵ect of estrogen plus progestin therapy on

time to CHD among postmenopausal women aged 50-79 years using data from the WHI

observational study (September 1993-September 2010). Following Hernán et al. (2008), we

first mimic the design of the WHI trial as closely as possible in the WHI observational

study. We then apply ROW to control for the non-randomization of the treatment. We

also compare the estimated hazard ratio obtained by using ROW, with those obtained by

using the methods presented in section 3.1.5.

4.1.1 Study population

We considered the target study population of postmenopausal women who in the WHI

observational study had reported no use of estrogen therapy, progesterone therapy or their

combination during 2-year prior the enrollment in the study. Baseline was defined as first

follow-up visit and women were followed from baseline to diagnosis of CHD, loss to follow-

up, death, or September 30, 2010, whichever occurred first. Out of the 93,676 women

comprising the original WHI observational study 37,080 used any hormone therapy in the
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2-year before the enrollment of the study while 30,960 lacked information about the number

of days since enrollment, and 1,567 lacked information on time since menopause. The final

study population was comprised of 24,069 women.

We considered the following 34 confounders: multivitamine without minerals use (yes,

no), multivitamine with minerals use (yes, no), ethnicity (White, Black, Hispanic, Native

American, Asian/Pacific Islander, Unknown), number of pregnancies (7 categories), bilat-

eral oophorectomy (yes, no), age at menopause (numeric), breast cancer ever (yes, no),

colon cancer ever (yes, no), endometrial cancer ever (yes, no), skin cancer ever (yes, no),

melanoma cancer ever (yes, no), other cancer past 10 years (yes, no), deep vein thrombosis

ever (yes, no), stroke ever (yes, no), myocardial infarction ever (yes, no), diabetes ever (yes,

no), high cholesterol requiring pills ever (yes, no), osteoporosis ever (yes, no), cardiovascu-

lar disease ever (yes, no), coronary artery bypass graft (yes, no), atrial fibrillation ever (yes,

no), aortic aneurysm ever (yes, no), angina (yes, no), hip fracture age 55 or older (yes, no),

smoked at least 100 cigarettes ever (yes, no), alcohol intake (non drinker, past drinker, less

than 1 drink per month, less than 1 drink per week, 1 to 7 drinks per week, 7+ drinks per

week), fruits med serv/day (numeric), vegetables med serv/day (numeric), dietary energy

(kcal), systolic blood pressure (numeric), diastolic blood pressure (numeric), body mass

index (numeric), education (11 categories), income (10 categories).

Time since menopause has been recognized as an important factor for the risks and ben-

efits of hormone therapy on CHD (Carrasquilla et al., 2015, 2017). We therefore evaluated

the impact of estrogen plus progestin therapy on time to CHD by conducting a stratified

analysis on three categories of time since menopause: 0-10 years, 11-20 years and 20+

years.

To impute missing values of the aforementioned confounders we used multiple impu-

tation by chained equations (Buuren and Groothuis-Oudshoorn, 2010). Hazard ratio esti-
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mates were computed using the imputed dataset.

4.1.2 Models setup

We obtained ROW by solving optimization problem (2.1)-(2.4) setting � = 0.0001 in con-

straint (2.2) (for each confounder). To obtain the set of ROW we used the R interface of

Gurobi. We compared ROW with IPW in which we estimated the propensity score by

using SuperLearner with the following library of algorithms: logistic regression model with

only main e↵ects, lasso-penalized logistic regression, and random forest; BalSL with the

same library of algorithms as that of IPW; GBM (with mean absolute standardized mean

di↵erence as stopping method, interaction depth equal to 3, number of trees equal to 10,000,

shrinkage equal to 0.01 and bag fraction equal to 1); PSM with propensity scores estimated

as for IPW and BalSL; CBPS containing only the covariate balancing conditions (exact

identification); EBAL and SBW with balance tolerance in standard deviation set equal

to 0.0001 (with the sample size of our dataset, the tuning algorithm presented in Wang

and Zubizarreta (2020) used to choose the degree of approximate covariates balance for

SBW considerably increased the computational burden of SBW and therefore was not per-

formed), OM: outcome modelling, a Cox proportional hazard model including confounders

and treatment; and Naive: Cox proportional hazard model including only the treatment.

To obtain the set of SBW we also used Gurobi. Once the sets of weights were obtained, we

plugged the weights into a weighted Cox regression regressing the treatment (estrogen plus

progestin therapy) on the time to CHD. We computed robust (sandwich) standard errors.

4.1.3 Results

Covariate balance. Figures 5-7 show absolute mean di↵erences (standardized for contin-

uous variables, raw for binary variables) between each of the aforementioned 34 confounders
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and the binary treatment estrogen plus progestin therapy versus no therapy, before (grey

dots) and after (black squares) weighting for ROW. ROW successfully balance all the con-

founders across the three strata of time since menopause. Table 1 shows the minimum,

median and maximum absolute mean di↵erence (standardized for continuous variables and

raw for binary variables) between confounders and treatment across 34 confounders and

across categories of time since menopause for each of the considered methods. ROW,

SBW, EBAL, and CBPS achieved the lowest maximum absolute mean di↵erence across

confounders, with ROW obtaining the lowest for strata 0-10 years and 20+ years. Meth-

ods that target precision instead of balance, such as IPW with SuperLearner, balanced

confounders worse than those methods that target covariate balance, such as ROW, SBW,

CBPS or EBAL. SBW could not find a solution when setting the balance tolerance equal

to 0.0001 (as described in the previous Section), 0.001, 0.01, and 0.1 in the 0-10 years and

20+ years category. We consequently do not report any results for SBW in these categories.

Table 4 in the Supplementary Material, shows the computational time in seconds needed to

obtain a solution across strata of time since menopause for each of the considered method.

The computational time required by ROW was significantly lower than that needed by

IPW, BalSL, GBP, SBW and PSM. Computational time slightly increased with sample

size.

Outcome analysis. Table 2 shows hazard ratio estimates and 95% confidence intervals

(computed using the robust standard error) for the e↵ect of estrogen plus progestin therapy

on time to CHD, and the robust standard error for each method and across categories of

time since menopause. Most of the methods lead to similar results. Proportional hazards

tests (Grambsch and Therneau, 1994) resulted in p-values greater than 0.05 for all models.

Figure 15 in the Supplementary Material shows the Kaplan-Meier curves weighted by ROW

for estrogen plus progestin (HT) across categories of time since menopause.
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Based on assumptions 2.1-2.3 of Section 2.1, the simulation results presented in Section

3, and on the covariate balance performance of ROW presented in Figures 5-7 and Table

1, we conclude that estrogen plus progestin therapy has no statistically significant e↵ect

on time to CHD among n = 24, 069 postmenopausal women aged 50-79 years enrolled in

the WHI observational study (September 1993-September 2010), across three categories of

time since menopause, i.e., , ĤR and 95% confidence intervals equal to 1.26 (0.70;2.28),

1.33 (0.87;2.02), and 0.79 (0.45;1.39), for 0-10, 11-20 and 20+ years since menopause,

respectively.

4.2 The e↵ect of red meat consumption on colon cancer

Colon cancer is the third most common cause of cancer-related death in the United States.

Although epidemiological studies have shown that excess consumption of red meat may be

related to colon cancer (Larsson et al., 2005; Larsson and Wolk, 2006), its consumption in

the United States has not been decreasing in the past few decades (Zeng et al., 2019).

In this section, using data from the WHI observational study, we aim at evaluating the

e↵ect of red meat consumption on time to colon cancer among postmenopausal women

aged 50-79 years. Following Song et al. (2004), we defined red meat as the sum of beef,

hamburger, lamb or pork as a main dish or a sandwich or mixed dish, and all processed

red meat. We defined consumption as medium servings per day of red meat. In addition

to the 34 confounders described in Section 4.1, we also consider the time since menopause

(numeric) and the use or not of estrogen plus progestin therapy (yes, no) as additional

confounders.
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Figure 5: Adjusted (weighted by ROW) (black squares) and unadjusted (grey dots) ab-

solute standardized mean di↵erences between confounders and treatment (estrogen plus

progestin).
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Time since menopause: 11−20 Years
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Figure 6: Adjusted (weighted by ROW) (black squares) and unadjusted (grey dots) ab-

solute standardized mean di↵erences between confounders and treatment (estrogen plus

progestin).
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Time since menopause: 20+ Years
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Figure 7: Adjusted (weighted by ROW) (black squares) and unadjusted (grey dots) ab-

solute standardized mean di↵erences between confounders and treatment (estrogen plus

progestin).
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Table 1: Minimum, median and maximum absolute mean di↵erence (standardized for

continuous variables, raw for binary variables) between confounders and treatment

across 34 confounders and across categories of time since menopause (0-10; 11-20; 20+

years), WHI observational study, n = 24, 069, 1993-2010.

Time since menopause

0-10 Years 11-20 Years 20+ Years

n = 6, 661 n = 9, 592 n = 7, 816

Abs Mean Di↵ Abs Mean Di↵ Abs Mean Di↵

Min Median Max Min Median Max Min Median Max

Method

ROW <0.0001 <0.0001 0.0006 <0.0001 0.0001 0.0007 <0.0001 0.0003 0.0012

IPW 0.0001 0.0071 0.1239 0.0003 0.0124 0.0736 0.0002 0.0111 0.0609

BalSL 0.0002 0.0032 0.057 0.0007 0.0065 0.1195 0.0007 0.0065 0.1195

GBM <0.0001 0.0035 0.0537 <0.0001 0.0054 0.0704 0.0007 0.0075 0.0689

CBPS <0.0001 0.0002 0.0022 <0.0001 0.0002 0.0007 <0.0001 0.0004 0.0022

SBW - - - <0.0001 <0.0001 0.0002 - - -

EBAL <0.0001 <0.0001 0.0012 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0017

PSM 0.0006 0.0185 0.3357 0.0002 0.0162 0.2411 0.0007 0.0227 0.1601

Naive <0.0001 0.0101 0.1872 0.0004 0.0234 0.1877 0.0006 0.0242 0.2408

First column: Method implemented, ROW: Robust Optimal Weights; IPW: Inverse Proba-

bility Weighting (propensity scores were estimated with SuperLearner with linear regression

model with only main e↵ects, and random forest in the library of algorithms); BalSL: Bal-

ance SuperLearner; GBM: propensity scores were estimated with Gradient Boosting Machine;

CBPS: Covariate Balancing Propensity Score; SBW: Stable Balancing Weights; EBAL: En-

tropy Balancing; PSM: Propensity Score Matching; OM: (outcome model) Cox proportional

hazard model including confounders and treatment; Naive: Cox proportional hazard model

including only the treatment. Second, Fourth and Sixth columns: Hazard ratio and 95% con-

fidence interval (computed using robust standard error). Third, Fifth and Seventh columns :

robust standard error.
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Table 2: Hazard ratio estimate and 95% confidence intervals of the e↵ect of estrogen plus

progestin therapy on time to CHD among postmenopausal women between 50 and 79

across categories of time since menopause (0-10; 11-20; 20+ years), WHI observational

study, n = 24, 069, 1993-2010.

Time since menopause

0-10 Years 11-20 Years 20+ Years

n = 6, 661 n = 9, 592 n = 7, 816

ĤR (95% CI) SE ĤR (95% CI) SE ĤR (95% CI) SE

Method

ROW 1.26 (0.70;2.28) 0.301 1.33 (0.87;2.02) 0.216 0.79 (0.45;1.39) 0.285

IPW 1.23 (0.69;2.17) 0.292 1.24 (0.83;1.84) 0.202 0.79 (0.46;1.36) 0.275

BalSL 1.25 (0.70;2.23) 0.295 1.26 (0.85;1.89) 0.204 0.82 (0.48;1.38) 0.269

GBM 1.22 (0.68;2.2) 0.301 1.29 (0.85;1.94) 0.210 0.87 (0.5;1.52) 0.285

CBPS 1.26 (0.70;2.26) 0.300 1.33 (0.88;2.02) 0.213 0.77 (0.44;1.35) 0.283

SBW - - 1.31 (0.87;1.99) 0.212 - -

EBAL 1.25 (0.70;2.26) 0.300 1.33 (0.88;2.02) 0.213 0.77 (0.44;1.34) 0.283

PSM 0.96 (0.19;4.73) 0.817 0.57 (0.14;2.39) 0.731 0.57 (0.14;2.39) 0.731

OM 1.24 (0.66;2.3) 0.318 1.35 (0.91;2.02) 0.203 0.93 (0.55;1.58) 0.271

Naive 1.23 (0.70;2.18) 0.291 1.17 (0.79;1.72) 0.198 0.82 (0.48;1.38) 0.267

First column: Method implemented, ROW: Robust Optimal Weights; IPW: Inverse Proba-

bility Weighting (propensity scores were estimated with SuperLearner with linear regression

model with only main e↵ects, and random forest in the library of algorithms); BalSL: Bal-

ance SuperLearner; GBM: propensity scores were estimated with Gradient Boosting Machine;

CBPS: Covariate Balancing Propensity Score; SBW: Stable Balancing Weights; EBAL: En-

tropy Balancing; PSM: Propensity Score Matching; OM: (outcome model) Cox proportional

hazard model including confounders and treatment; Naive: Cox proportional hazard model

including only the treatment. Second, Fifth and Eight columns : Minimum absolute standard-

ized mean di↵erence between confounders and treatment across 33 confounders. Third, Sixth

and Ninth columns: Median absolute standardized mean di↵erence between confounders and

treatment across 34 confounders. Fourth, Seventh and Tenth columns: Maximum absolute

standardized mean di↵erence between confounders and treatment across 33 confounders.
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4.2.1 Models setup

We obtained ROW by solving optimization problem (2.1)-(2.4) setting � = 0.001 in con-

straint (2.2). To obtain the set of ROW we used the R interface of Gurobi. We compared

ROW with IPW in which we estimated the generalized propensity scores by using Super-

Learner with the following library of algorithms: linear regression model with only main

e↵ects, and random forest; BalSL with the same library of algorithms as for IPW; GBM

(with mean Pearson correlation between covariates and treatment as stopping method,

interaction depth equal to 4, number of trees equal to 20,000, shrinkage equal to 0.0005

and bag fraction equal to 1); CBPS and npCBPS containing only the covariate balancing

conditions, and OM, a Cox proportional hazard model including confounders and red meat

consumption. As suggested by Robins et al. (2000), to compute the generalized propensity

scores for IPW, BalSL and GBM we assumed the conditional density of the treatment to

be Normal. Once the sets of weights were obtained, we plugged the weights into a weighted

Cox regression regressing red meat consumption on the time to colon cancer. We computed

robust standard errors.

4.2.2 Results

Covariate balance. The first, second and third columns of Table 3 shows the minimum,

median and maximum absolute correlation between confounders and red meat consumption

across 36 confounders. ROW resulted in the lowest maximum absolute correlation, followed

by npCBPS with a maximum absolute correlation more than 20 times higher than that of

ROW. In addition, ROW required only 12 seconds to find a solution, compared with much

higher computational times needed by the other methods (fourth column of Table 3). Figure

8 shows absolute correlations between the 36 confounders and red meat consumption. As
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shown in Table 3, ROW resulted in low absolute correlations across all confounders

Outcome analysis. The last two columns of Table 3 show the estimated hazard ratio, its

95% confidence interval and robust standard error of the impact of red meat consumption on

time to colon cancer. Proportional hazards tests (Grambsch and Therneau, 1994) resulted

in p-values greater than 0.05 for all models. Based on assumptions 2.1-2.3 of Section 2.1,

our simulations results presented in Section 3, and the absolute correlations showed in

Figure 8, we conclude that red meat consumption is statistically associated with higher

risk of colon cancer among n = 24, 069 postmenopausal women aged 50-79 years enrollend

in the WHI observational study (September 1993-September 2010), i.e., , ĤR and 95%

confidence intervals equal to 1.68 (1.19;2.37).

5 Conclusions

Unbiased estimation of the e↵ect of binary and continuous treatments using observational

data is crucial for medical decision making. In this paper, we proposed a method based

on a convex constrained quadratic optimization problem that finds weights with minimal

variance, thus controlling for extreme weights, while satisfying constraints on the sample

correlation between confounders and treatment, thus targeting covariate balance. ROW

performed well across levels of practical positivity violation, misspecification and censoring

for both binary and continuous treatments. In addition, in this paper we have shown that

methods that target covariate balance, like ROW, CBPS, SBW and EBAL perfom well

in terms of absolute bias and root mean squared error compared with propensity score

methods, like IPW, regardless of what method is used to estimate the propensity scores.

In addition to hazard ratio, ROW can be used to estimate other survival causal param-

eter of interest like the survival di↵erence or the mean survival (Mao et al., 2018). Also,
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Table 3: Minimum, median and maximum absolute correlation between

confounders and red meat consumption across 36 confounders, computa-

tional time, hazard ratio estimate, 95% confidence intervals and robust

standard error of the e↵ect of red meat consumption on time to colon can-

cer among postmenopausal women between 50 and 79 - WHI observational

study, 1993-2010, n = 24, 069.

Absolute Correlation Time

Method Min Median Max sec ĤR (95%CI) SE

ROW <0.001 0.0011 0.0070 12.0 1.68 (1.19;2.37) 0.17

IPW <0.001 0.0097 0.2816 366.5 1.26 (1.05;1.5) 0.09

BalSL <0.001 0.0101 0.2309 367.2 1.28 (1.06;1.54) 0.09

GBM <0.001 0.0163 0.5924 778.3 1.17 (1.00;1.37) 0.08

CBPS <0.001 0.0148 0.3489 64.5 1.23 (0.64;2.36) 0.33

npCBPS <0.001 0.0094 0.1523 9724.1 1.22 (0.98;1.52) 0.11

OM - - - 0.2 1.28 (1.00;1.63) 0.13

Naive <0.001 0.0163 0.5915 0.1 1.17 (0.99;1.39) 0.08

First column: Method implemented, ROW: Robust Optimal Weights; IPW:

Inverse Probability Weighting (propensity scores were estimated with Super-

Learner with linear regression model with only main e↵ects, and random forest

in the library of algorithms); BalSL: Balance SuperLearner; CBPS: Covariate

Balancing Propensity Score; npCBPS: non-parametric CBPS; OM: Cox propor-

tional hazard model - outcome model. Second to fourth columns : minimum,

median and maximum absolute correlation across confounders. Fifth column:

Time in seconds. Sixth column: Hazard ratio estimate and 95% confidence inter-

vals (computed with robust standard errors). Seventh column: robust standard

error.
34



MI ever
Alcohol intake

Angina
Cardiovascular disease ever

Stroke ever
Ethnicity

Atrial fibrillation ever
Vegetables, med serv/day

Skin cancer ever
Colon cancer ever

Endometrial cancer ever
Breast cancer ever

Smoked >100 cigarettes ever
Melanoma cancer ever

Aortic aneurysm ever
Coronary Artery Bypass Graft
Multivitamine without minerals

Hormone Therapy ever
Hip fracture age 55 or older
Other cancer past 10 years
Deep vein thrombosis ever
High cholesterol pills ever
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Absolute Treatment−Covariate

Correlations

Covariate Balance

Figure 8: Adjusted (weighted by ROW) (black squares) and unadjusted (grey dots) absolute

correlation between confounders and treatment (red meat consumption).
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ROW can be used to estimate e↵ects of binary and continuous treatments on binary out-

comes, (marginal odds ratio), and continuous outcomes (average and quantile treatment

e↵ects). ROW can also be use to estimate e↵ects of multi-value treatments. To do so, if

the interest is to make inference on each of the treatment’s contrasts, we suggest to run

pair-wise comparisons by applying ROW as if it was a binary treatment. Alternatively, one

can consider the multi-value treatment as a continuous treatment (as suggested by Fong

et al. (2018)). Future research is needed to evaluate ROW with multi-value treatments.

As presented in our simulation and in our case studies, we suggest to considered cate-

gorical variables (such as education for instance) as numeric, and balance them accordingly.

In addition, in our simulations and case studies we only considered balancing linear covari-

ates. Quadratic or higher order and interaction terms can be balanced by adding them

into constraint (2.2). If no solution to optimization problem (2.2)-(2.4) exists, we suggest

to increase the parameter � of (2.2) and re-run the solver. We also suggest to evaluate co-

variate balance, defined as the absolute standardized mean di↵erence for a binary outcome

and as the absolute correlation for a continuous outcome for each new set of ROW.
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SUPPLEMENTARY MATERIAL

6 Simulations

In this section, we provide additional simulations’ results evaluating 1) the naive (the inverse

of the observed Fisher information of the coe�cient), robust and bootstrap standard error

estimator 6.1; 2) the impact of practical positivity violation, misspecification and censoring

on coverage of 95% confidence intervals 6.1; 3) the impact of sample sizes 6.2 and 4) the

impact of the number of covariates included in the analysis 6.3, on absolute bias, root mean

squared error, balance and computational time in seconds.

6.1 Standard error and coverage

We considered the same simulation scenario as that described in Section 3 of the origi-

nal manuscript. We used non-parametric bootstrap with normal approximation confidence

intervals (Davison and Hinkley, 1997). Left panels of Figures 9 and 10 show the ratios

between the standard deviation of the estimated hazard ratio across simulations and the

bootstrap, robust and naive standard errors for the binary treatment (Figure 9) and for the

continuous treatment (Figure 10) scenarios. The Naive estimator resulted in higher stan-

dard error compared with the empirical standard deviation (lower values of the ratio) and

consequential overcoverage across all levels of practical positivity violation, misspecification

and censoring for both binary and continuous treatments. Robust and bootstrap standard

errors behaved similarly across most levels of practical positivity violation, misspecification

and censoring and type of treatments. Under strong misspecification in the binary treat-

ment scenario (middle panel of Figure 9), ROW using the robust standard error estimator

substantially undercovered the 95% confidence interval, while it overcovered it while using
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bootstrap and the naive standard error. Overall, robust and bootstrap standard errors

resulted in slightly higher standard errors compared with the standard deviation of the

estimated hazard ratio, and consequently resulted in higher coverage. As expected, when

standard errors are close to the standard deviation of the estimated hazard ratio and ROW

has bias, ROW exhibits undercoverage (top right panel of Figure 10).

6.2 Sample size

We considered sample sizes equal to 50, 75, 100, 250, 500, 5, 000, and 10, 000. We computed

the expected survival time t as described in Section 3.1 of the original manuscript, where

X1:4 ⇠ MultiN(µ,⌃), µ = (0, 0, 0, 0) and ⌃ = I4, where I4 is the identity matrix. We

considered � = 1.4 (the coe�cients for the confounders in the outcome model - Section

3.1.5) and � = 1.5 (the coe�cients of the confounders in the treatment model - Section

3.1.1) for all four confounders. To reflect only the impact of sample size, we considered a

moderate practical positivity violation scenario (� = 1 and ⌫ = 0.6 as in Section 3.1.2), a

null misspecification (⌧ = 0 as in Section 3.1.5) and a low percentage of censored observation

(✏ = 0 as in Section 3.1.4). Figure 11 shows the absolute bias (top lef panel), the root mean

squared error (RMSE) (top right panel), absolute standardized mean di↵erence across the

four confounders (Balance) (left bottom panel) and the average computational time in

seconds to obtain a solution (right bottom panel) across levels of sample sizes for the

binary treatment scenario. Figure 11 shows those for the continuous treatment. For both

treatments, absolute bias and RMSE decreased with increasing sample sizes. Balance was

kept low across all sample sizes. The computational time in seconds increased up to 1.5

seconds for n = 10, 000.
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Figure 9: Left panels : ratios between the standard deviation of the estimated hazard ratio across sim-

ulations and the bootstrap (dashed), naive (the inverse of the observed Fisher information of the coef-

ficient)(dotted) and robust (dotted-dashed) standard errors across levels of practical positivity violation

(top panels), misspecification (middle panels) and censoring (bottom panels) for the binary treatment.

Right panels : coverage of the 95% confidence interval using the bootstrap (with normal approximation

confidence intervals)(dashed), naive (dotted) and robust (dotted-dashed) standard errors across levels of

practical positivity violation (top panels), misspecification (middle panels) and censoring (bottom panels)

for the binary treatment.
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Figure 10: Left panels: ratios between the standard deviation of the estimated hazard ratio across

simulations and the bootstrap (dashed), naive (the inverse of the observed Fisher information of the

coe�cient)(dotted) and robust (dotted-dashed) standard errors across levels of practical positivity violation

(top panels), misspecification (middle panels) and censoring (bottom panels) for the continuous treatment.

Right panels : coverage of the 95% confidence interval using the bootstrap (with normal approximation

confidence intervals)(dashed), naive (dotted) and robust (dotted-dashed) standard errors across levels of

practical positivity violation (top panels), misspecification (middle panels) and censoring (bottom panels)

for the continuous treatment.
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Figure 11: Absolute bias (top left panel), root mean squared error (top right panel), absolute standardized

mean di↵erence across four confounders (left bottom panel) and the average computational time in seconds

to obtain a solution (right bottom panel) across levels of sample sizes for the binary treatment scenario.
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Continuous treatment
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Figure 12: Absolute bias (top left panel), root mean squared error (top right panel), absolute standardized

mean di↵erence across four confounders (left bottom panel) and the average computational time in seconds

to obtain a solution (right bottom panel) across levels of sample sizes for the continuous treatment scenario.
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6.3 Number of confounders

We considered the following number of confounders 1, 5, 10, 20, 50, and 100 and n = 1, 000.

We computed the expected survival time t as described in Section 3.1 of the original

manuscript, where X1:K ⇠ MultiN(µ,⌃), µ =0 and ⌃ = IK , where, 0 and IK are the

vector of zero of dimension K, and the identity matrix of dimension K ⇥ K, where K is

total number of confounders. We considered � = 0.1 (the coe�cients for the confounders in

the outcome model - Section 3.1.5) and � = 0.1 (the coe�cients of the confounders in the

treatment model - Section 3.1.1) for all confounders. As for the evaluation of the impact of

sample sizes, we considered a moderate practical positivity violation scenario (� = 1 and

⌫ = 0.6 as in Section 3.1.2), a null misspecification (⌧ = 0 as in Section 3.1.5) and a low

percentage of censored observation (✏ = 0 as in Section 3.1.4). Figure 13 shows the abso-

lute bias (top lef panel), the root mean squared error (RMSE) (top right panel), absolute

standardized mean di↵erence across the four confounders (Balance) (left bottom panel)

and the average computational time in seconds to obtain a solution (right bottom panel)

across numbers of confounders for the binary treatment scenario. Figure 14 shows those

for the continuous treatment. For both treatments, absolute bias and RMSE increased

with increasing number of confounders. Balance was kept low across all levels. The com-

putational time in seconds slightly increased from below 0.05 seconds to 0.20 seconds (100

confounders).

7 Case studies

In this Section, we provide additional results of the case studies presented in Section 4 in

the original manuscript.
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Figure 13: Absolute bias (top left panel), root mean squared error (top right panel), absolute standardized

mean di↵erence across four confounders (left bottom panel) and the average computational time in seconds

to obtain a solution (right bottom panel) across number of confounders for the binary treatment scenario.
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Continuous treatment
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Figure 14: Absolute bias (top left panel), root mean squared error (top right panel), absolute standardized

mean di↵erence across four confounders (left bottom panel) and the average computational time in seconds

to obtain a solution (right bottom panel) across number of confounders for the continuous treatment

scenario.
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Table 4: Computational time in seconds needed to obtain

a solution across categories of time since menopause (0-

10; 11-20; 20+ years), WHI observational study, n =

24, 069, 1993-2010.

Time since menopause

0-10 Years 11-20 Years 20+ Years

n = 6, 661 n = 9, 592 n = 7, 816

Time (sec) Time (sec) Time (sec)

Method

ROW 1.0 2.8 1.6

IPW 218.4 332.5 238.1

BalSL 213.6 312.2 225.6

GBM 83.7 115.2 93.3

CBPS 4.6 7.9 6.2

SBW 653.5⇤ 2310.8 1313.8⇤

EBAL 1.1 1.6 1.3

PSM 236.0 338.1 229.1

OM 0.1 0.1 0.1

Naive <0.1 <0.1 <0.1

First column: Method implemented, ROW: Robust Optimal

Weights; IPW: Inverse Probability Weighting (propensity scores

were estimated with SuperLearner with linear regression model

with only main e↵ects, and random forest in the library of al-

gorithms); BalSL: Balance SuperLearner; GBM: propensity scores

were estimated with Gradient Boosting Machine; CBPS: Covari-

ate Balancing Propensity Score; SBW: Stable Balancing Weights;

EBAL: Entropy Balancing; PSM: Propensity Score Matching; OM:

(outcome model) Cox proportional hazard model including con-

founders and treatment; Naive: Cox proportional hazard model

including only the treatment. Second, Third and Fourth columns:

Computational time in seconds and sample size within each cate-

gory of time since menopause. ⇤ Time at which SBW stopped with-

out finding a solution with balance tolerance set equal to 0.0001.
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Figure 15: Kaplan-Meier curves weighted by ROW for estrogen plus progestin (HT; Yes versus No) across

categories of time since menopause.
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8 Additional results

In this Section, we investigate the distribution of ROW across di↵erent treatment, covariate

relationships. We considered eight scenarios:

1. Linear dependence: the treatment, T has a linear dependence on the confounder, X

as

X ⇠ N(0, 1) and T ⇠ X +N(0, 1)

2. Nonlinear dependence quadratic: the treatment, T has a quadratic dependence on

the confounder, X as

X ⇠ N(0, 1) and T ⇠ X +X
2 +N(0, 1)

3. Nonlinear dependence cubic: the treatment, T has a cubic dependence on the con-

founder, X as

X ⇠ N(0, 1) and T ⇠ 0.5(X + 0.1)3 +N(0, 1)

4. Nonlinear dependence without correlation: the treatment, T has a lattice-dependence

on the confounder, X as

X ⇠ Unif(�.5, .5) and T ⇠

8
<

:
N(0, 13) if X  k1

6k
1
2

�
N(1, 13) +N(�1, 13)

�
otherwise

5. Sinusoidal dependence: the treatment, T has a sinusoidal dependence on the con-

founder, X as

X ⇠ N(0, 4) and T ⇠ sinX +N(0, 0.1)
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6. Independence: the treatment, T is independent on the confounder, X as

X ⇠ N(0, 1) and T ⇠ N(0, 1)

7. Right-skewed : the treatment, T is right-skewed and depends on the confounder, X

as

X ⇠ Beta(1, 5) and T ⇠ 4X + LogN(0, 0.7)

8. Left-skewed : the treatment, T is left-skewed and depends on the confounder, X as

X ⇠ Beta(5, 1) and T ⇠ 4X +Beta(5, 1)

Figure 16 shows the relationships before (blue lines) and after (black lines) weighting

for ROW across di↵erent covariate-treatment relationships. ROW was almost uniformly

distributed under nonlinear dependence without correlation, sinusoidal and under indepen-

dence. ROW presented larger weights under nonlinear cubic dependence. We balanced

linear and terms for obtaining ROW under the quadratic scenario. We balanced linear,

quadratic and cubic terms for obtaining ROW under the cubic scenario. Regardeless of

the rigth or left skeweness of the treatment, ROW successfully eliminated the relationship

between the covariate and the treatment. ROW could be consequentely used when contin-

uous treatments are skweded, such as for example, when interested in evaluating treatment

doses, number of cigarettes smoked in one day, or daily food consumption.
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Figure 16: Graphical representation of ROW balancing a covariate (x-axis) and continuous treatment

(y-axis) across di↵erent covariate-treatment relationships. Blue lines represent the true relationships be-

tween thebinary (a probit model) and the continuous (simple regression with normal errors and positive

coe�cient)treatment. Black lines represent the relationship between treatments and covariate after weight-

ing for ROW. Size and color of the circles represent the individual weight assigned (the larger/darker the

higher).
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