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Task

Estimate the effect of a treatment, e.g., ATE, on an
outcome of interest using observational data
Observational data are affected by confounding
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Covariate balance

How to control for confounding? Covariate balance
the means of covariates between treatment groups should
be the same
the two treatment groups are similar except for the
assignment of the treatment

Consequently, potential differences can only be attributed to
the treatment instead of other confounding factors.
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Surgical Interventions on ODI
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Covariate balance

The absolute mean difference of covariates across treatment groups is
null after weighting.
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Inverse probability weighting

P(T|Obese)=0.05
1/P(T|Obese)=20

IPW is the unique set of weights that balance the covariate
distributions of different treatment groups.
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IPW issues

IPW can lead to poor covariate balance due to

Extreme weights (lack of overlap)
Model misspecification
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IPW issues

Proposed solutions

Extreme weights → post-hoc fixes, e.g.., truncation
Model misspecification → flexible modeling, e.g..,
machine learning
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An alternative approach

Find weights that optimize covariate balance in the data at
hand.
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Generalized Average Treatment Effect

We consider GATE defined as

τV =
n∑

i=1
Vi(g1(Xi) − g0(Xi)) (1)

where Vi is chosen to target the estimand of interest. For
instance, setting Vi = 1

n
would target SATE. Let Xi ∈ X be

the observed confounders
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A weighted estimator for GATE

To estimate GATE in eq. (1) we propose to use the following
weighted estimator

τ̂W =
∑
i∈T

WiYi −
∑
i∈C

WiYi =
n∑

i=1
(−1)(Ti+1)SiWiYi. (2)

where Ti = I [i ∈ T ] is the indicator of being treated with
t = 1, and Si = I [i ∈ S] is the indicator of being in the
labeled sample.
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Error in estimation

CMSE︷ ︸︸ ︷
E
[
(τ̂W − τV )2 | H1:n

]
=

B1(W1:n, V1:n, g1)︸ ︷︷ ︸
imbalance in g1

− B0(W1:n, V1:n, g0)︸ ︷︷ ︸
imbalance in g0


2

+
n∑

i=1
SiW

2
i σ2

i︸ ︷︷ ︸
noise

.

where Bt(W1:n, V1:n, gt) = ∑n
i=1 (SiI [Ti = t] Wi − Vi) gt(Xi)
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Worst-case imbalance

By the representer theorem,

∆2
t (W1:n, V1:n) = sup

∥gt∥t≤1
Bt(W1:n, V1:n, gt)

= sup
∥g∥2

t ≤1

(
n∑

i=1
(1[Si = s]1[Ti = t]Wi − Vi) gt(Xi)

)2

= W1:n
T ISItKtISIt︸ ︷︷ ︸

Q

W1:n − 2V1:n
T KtISIt︸ ︷︷ ︸

c

W1:n

+ V1:n
T KtV1:n.

where the matrix Kt ∈ Rn×n is defined as Ktij = Kt(Xi, Xj).
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Kernel Optimal Matching (KOM)

Linearly-constrained convex-quadratic optimization problem,

min
W1:n≥0,

W T
1:nISI1en=n,

W T
1:nISI0en=n

1
n2

(
W1:n

T QW1:n − 2V1:n
T cW1:n

)

M. Santacatterina — Optimal weighting for estimating treatment effects 13/23



Simulations
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Surgical Interventions on ODI

We applied KOM in the evaluation of two spine surgical
interventions on the Oswestry Disability Index (ODI).

Table: The effect of fusion-plus-laminectomy on ODI

ATE Unadjusted
τ̂W (SE) 1.33 (3.98) 5.09* (2.31)
* indicates statistical significance at the 0.05 level.
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Time-dependent confounding

An MSM is a model for the marginal causal effect of a
time-varying treatment regime on the mean of Y , that is,

E [Y (a)] = g(a, β), (3)

where g(a, β) is some known function class parametrized by β.

Q: How do we balance time-dependent confounders?
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Kernel Optimal Weighting

E
[
W1[A = a]Y

]
− E [Y (a)] =

T∑
t=1

δ(t)
at

(W, g
(t)
a ).

Imbalances for any time t ≥ 3 as

δ(t)
at

(W, h(t)) = E
[
W1[At = at]h(t)(At−1, X t)

]
− E

[
Wh(t)(At−1, X t)

]
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KOW

min
W1:n∈W

1
2W T

1:nK◦
λW1:n − eT KλW1:n (4)
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KOW

Table: Effect of HIV treatment on time to death.
KOW Logistic

K1 K2 IPTCW sIPTCW
ĤR 0.40* 0.48* 0.14 1.25
SE (0.30) (0.28) (1.15) (0.30)

* indicates statistical significance at the 0.05 level.
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Questions?

Contact me at santam13@nyu.edu

Visit my website https://michelesantacatterina.github.io/
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